Identification and Characterization of microRNAS from Entamoeba histolytica HM1-IMSS
نویسندگان
چکیده
BACKGROUND Entamoeba histolytica is the causative agent of amebiasis, a disease that is a major source of morbidity and mortality in the developing world. MicroRNAs (miRNAs) are a large group of non-coding RNAs that play important roles in regulating gene expression and protein translation in animals. Genome-wide identification of miRNAs is a critical step to facilitating our understanding of genome organization, genome biology, evolution, and post-transcriptional regulation. METHODOLOGY/PRINCIPAL FINDINGS We sequenced a small RNA library prepared from a culture of trophozoites of Entamoeba histolytica Strain HM1-IMSS using a deep DNA sequencing approach. Deep sequencing yielded 16 million high-quality short sequence reads containing a total of 5 million non-redundant sequence reads. Based on a bioinformatics pipeline, we found that only 0.5% of these non-redundant small RNA reads were a perfect match with the drafted E. histolytica genome. We did not find miRNA homologs in plant or animal miRNAs. We discovered 199 new potential Entamoeba histolytica miRNAs. The expression and sequence of these Ehi-miRNAs were further validated through microarray by µParaflo Microfluidic Biochip Technology. Ten potential miRNAs were additionally confirmed by real time RT-PCR analysis. Prediction of target genes matched 32 known genes and 34 hypothetical genes. CONCLUSIONS/SIGNIFICANCE These results show that there is a number of regulatory miRNAs in Entamoeba histolytica. The collection of miRNAs in this parasite could be used as a new platform to study genomic structure, gene regulation and networks, development, and host-parasite interactions.
منابع مشابه
Identification of the Virulence Landscape Essential for Entamoeba histolytica Invasion of the Human Colon
Entamoeba histolytica is the pathogenic amoeba responsible for amoebiasis, an infectious disease targeting human tissues. Amoebiasis arises when virulent trophozoites start to destroy the muco-epithelial barrier by first crossing the mucus, then killing host cells, triggering inflammation and subsequently causing dysentery. The main goal of this study was to analyse pathophysiology and gene exp...
متن کاملIsolation of a strain-specific Entamoeba histolytica cDNA clone.
Entamoeba histolytica is an intestinal parasite causing significant morbidity and mortality worldwide. More tools are needed to understand the epidemiology and molecular pathogenesis of amebiasis. A cDNA library was constructed by using poly(A)+ RNA isolated from an axenic strain of E. histolytica, HM1:IMSS, which expresses a pathogenic isoenzyme pattern (zymodeme). Differential screening of th...
متن کاملEntamoeba histolytica. Phagocytosis as a virulence factor
In this paper, we attempted to define the role of phagocytosis in the virulence of Entamoeba histolytica. We have isolated, from a highly phagocytic and virulent strain, a clone deficient in phagocytosis. Trophozoites of wild-type strain HM1:IMSS were fed with Escherichia coli strain CR34-Thy- grown on 5-bromo,2'-deoxyuridine. The trophozoites that had incorporated the base analog through phago...
متن کاملAntigens in electron-dense granules from Entamoeba histolytica as possible markers for pathogenicity.
In vitro interaction of Entamoeba histolytica with collagen induces intracellular formation and release of electron-dense granules (EDG) and stimulation of collagenolytic activity. Purified EDG contain 1.66 U of collagenase per mg of protein. Thus, EDG may participate in tissue destruction during invasive amebiasis. Monoclonal antibodies (MAbs) L1.1 and L7.1 reacted specifically with EDG in enz...
متن کاملCharacterization of an immuno-dominant variable surface antigen from pathogenic and nonpathogenic Entamoeba histolytica
A 125-kD surface antigen of Entamoeba histolytica is recognized by 73% of immune sera from patients with amoebic liver abscesses. Using pooled human immune sera a cDNA clone (lambda cM17) encoding this antigen (M17) has been isolated from a lambda gt11 expression library of the virulent stain E. histolytica HM1:IMSS. Monospecific antibodies, purified by binding to phage lysate of lambda cM17, a...
متن کامل